Free Will

数据结构与算法(5):AVL树

我们知道,对于一般的二叉搜索树(Binary Search Tree),其期望高度(即为一棵平衡树时)为$log_2n$,其各操作的时间复杂度$O(log_2n)$同时也由此而决定。但是,在某些极端的情况下(如在插入的序列是有序的时),二叉搜索树将退化成近似链或链,此时,其操作的时间复杂度将退化成线性的,即O(n)。我们可以通过随机化建立二叉搜索树来尽量的避免这种情况,但是在进行了多次的操作之后,由于在删除时,我们总是选择将待删除节点的后继代替它本身,这样就会造成总是右边的节点数目减少,以至于树向左偏沉。这同时也会造成树的平衡性受到破坏,提高它的操作的时间复杂度。于是就有了我们下边介绍的平衡二叉树。

一、平衡二叉树

平衡二叉树定义:平衡二叉树(Balanced Binary Tree)又被称为AVL树(有别于AVL算法),且具有以下性质:它是一 棵空树或它的左右两个子树的高度差的绝对值不超过1,并且左右两个子树都是一棵平衡二叉树。平衡二叉树的常用算法有红黑树、AVL树等。在平衡二叉搜索树中,我们可以看到,其高度一般都良好地维持在O(log2n),大大降低了操作的时间复杂度。

其严格定义为:
一颗空树是平衡二叉树;若T是一棵非空二叉树,其左、右子树为TL和TR,令hl和hr分别为左、右子树的深度。当且仅当

  • TL、TR都是平衡二叉树;
  • 并且满足公式$|hl-hr|≤1$时,则T是平衡二叉树

相应地,定义$hl-hr$为二叉平衡树的平衡因子(balance factor)。因此,平衡二叉树上所有结点的平衡因子可能是-1,0,1。换言之,若一颗二叉树上任一结点的平衡因子的绝对值都不大于1,则该树就是平衡二叉树。

最小二叉平衡树的节点的公式如下:$F(n)=F(n-1)+F(n-2)+1$

这个类似于一个递归的数列,可以参考Fibonacci数列,1是根节点,$F(n-1)$是左子树的节点数量,$F(n-2)$是右子树的节点数量。

二、平衡查找树(AVL树)

2.1 AVL树的定义

平衡二叉树(AVL树,发明者的姓名缩写):一种高度平衡的排序二叉树,其每一个节点的左子树和右子树的高度差最多等于1。平衡二叉树首先必须是一棵二叉排序树!

平衡因子(Balance Factor):将二叉树上节点的左子树深度减去右子树深度的值。对于平衡二叉树所有包括分支节点和叶节点的平衡因子只可能是-1,0和1,只要有一个节点的因子不在这三个值之内,该二叉树就是不平衡的。


最小不平衡子树:距离插入结点最近的,且平衡因子的绝对值大于1的节点为根的子树。

n个结点的AVL树最大深度约1.44log2n。查找、插入和删除在平均和最坏情况下都是O(logn)。增加和删除可能需要通过一次或多次树旋转来重新平衡这个树。这个方案很好的解决了二叉查找树退化成链表的问题,把插入,查找,删除的时间复杂度最好情况和最坏情况都维持在O(logN)。但是频繁旋转会使插入和删除牺牲掉O(logN)左右的时间,不过相对二叉查找树来说,时间上稳定了很多。

可以采用动态平衡技术保持一个平衡二叉树。构造平衡二叉树的时候,也可以采用相同的方法,默认初始时,是一个空树,插入节点时,通过动态平衡技术对二叉树进行调整。

Adeleon-Velskii和Landis提出了一个动态地保持二叉排序树平衡的方法,其基本思想是:在构造二叉排序树的过程中,每当插入一个结点时,首先检查是否因插入而破坏了树的平衡性,若是因插入结点而破坏了树的平衡性,则找出其中最小不平衡树,在保持排序树特性的前提下,调整最小不平衡子树各结点之间的连接关系,以达到新的平衡。通常这样得到的平衡二叉排序树简称为AVL树。

2.2 AVL树的自平衡操作——旋转

AVL树最关键的也是最难的一步操作就是旋转。旋转主要是为了实现AVL树在实施了插入和删除操作以后,树重新回到平衡的方法。下面我们重点研究一下AVL树的旋转。

2.2.1 不平衡的四种情况

对于一个平衡的节点,由于任意节点最多有两个儿子,因此高度不平衡时,此节点的两颗子树的高度差2。容易看出,这种不平衡出现在下面四种情况:

  • 1) 6节点的左子树3节点高度比右子树7节点大2,左子树3节点的左子树1节点高度大于右子树4节点,这种情况成为左左。
  • 2) 6节点的左子树2节点高度比右子树7节点大2,左子树2节点的左子树1节点高度小于右子树4节点,这种情况成为左右。
  • 3) 2节点的左子树1节点高度比右子树5节点小2,右子树5节点的左子树3节点高度大于右子树6节点,这种情况成为右左。
  • 4) 2节点的左子树1节点高度比右子树4节点小2,右子树4节点的左子树3节点高度小于右子树6节点,这种情况成为右右。

从图2中可以可以看出,1和4两种情况是对称的,这两种情况的旋转算法是一致的,只需要经过一次旋转就可以达到目标,我们称之为单旋转。2和3两种情况也是对称的,这两种情况的旋转算法也是一致的,需要进行两次旋转,我们称之为双旋转。

2.2.2 单旋转

单旋转是针对于左左和右右这两种情况的解决方案,这两种情况是对称的,只要解决了左左这种情况,右右就很好办了。图3是左左情况的解决方案,节点k2不满足平衡特性,因为它的左子树k1比右子树Z深2层,而且k1子树中,更深的一层的是k1的左子树X子树,所以属于左左情况。

为使树恢复平衡,我们把k2变成这棵树的根节点,因为k2大于k1,把k2置于k1的右子树上,而原本在k1右子树的Y大于k1,小于k2,就把Y置于k2的左子树上,这样既满足了二叉查找树的性质,又满足了平衡二叉树的性质。

这样的操作只需要一部分指针改变,结果我们得到另外一颗二叉查找树,它是一棵AVL树,因为X向上一移动了一层,Y还停留在原来的层面上,Z向下移动了一层。整棵树的新高度和之前没有在左子树上插入的高度相同,插入操作使得X高度长高了。因此,由于这颗子树高度没有变化,所以通往根节点的路径就不需要继续旋转了。

2.2.3 双旋转

双旋转:对于左右和右左这两种情况,单旋转不能使它达到一个平衡状态,要经过两次旋转。双旋转是针对于这两种情况的解决方案,同样的,这样两种情况也是对称的,只要解决了左右这种情况,右左就很好办了。图4是左右情况的解决方案,节点k3不满足平衡特性,因为它的左子树k1比右子树Z深2层,而且k1子树中,更深的一层的是k1的右子树k2子树,所以属于左右情况。2019-05-17-165749.jpg

为使树恢复平衡,我们需要进行两步,第一步,把k1作为根,进行一次右右旋转,旋转之后就变成了左左情况,所以第二步再进行一次左左旋转,最后得到了一棵以k2为根的平衡二叉树树。

三、构建过程

下面是由[1,2,3,4,5,6,7,10,9]构建平衡二叉树



2019-05-17-165830.jpg




本文结束 欢迎关注我的个人公众号