Free Will

人大应统部落(4):2019年中国人民大学应用统计专业课真题与解析

扫一扫,关注【应统联盟】公众号,或添加微信 zhanghua63170140

2019年中国人民大学应用统计初试专业课真题,之后会更新详细解答。

如有疑问或建议,可添加微信:zhanghua63170140

第一题

当检验统计量没有落入拒绝域时,可不可以说“接受原假设”,请说明理由。

第二题

在时间序列中,请说明严平稳和宽平稳的定义是什么?二者之间有什么联系?并说明如何判断数据的平稳性。

第三题

某研究小组想要研究某城市中A、B两种疾病的发病率,其中A疾病的发病率为0.2,B疾病的发病率为0.1,为了使抽样的绝对误差不超过1%,则需要随机抽取的样本是多少?并分析简单随机抽样的可行性和效率,如果你来设计试验,你会怎样设计?

第四题

在回归分析中,说明如何判别是否存在异方差?

第五题

在多元统计分析中,$\sigma ^2$和$\sum$的用处非常多,请用至少三种不同的多元分析方法来说明$\sigma ^2$和$\sum$的应用(文字+公式)

第六题

设X服从P维正态分布,即$X - N_p(\mu,\sum)$,其中$\sum$是对角矩阵,对角元素分别为$\sigma_{11} ,\sigma_{22} ,······\sigma_{pp} $,从p维正态总体中抽取一个样本量为n的样本$x_1,x_2,x_3,·····,x_n$,试估计$\mu$和$\sigma$的极大似然估计。

第七题

设A、B、C、D为4个随机事件,其中$P(BC)≠0$

(1)证明,$P(A|BC) = P(A|C)$与$P(AB|C) = P(A|C)·P(B|C)$是等价的
(2)如果$P(ABC|D) = P(A|D)·P(BC|D)$,证明$P(AB|D)=P(A|D)·P(B|D)$



应统联盟


连接十万名应统专业同学


阿药算法


打通算法面试任督二脉